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ABSTRACT
Links in most real networks often change over time. Such temporality of links encodes the ordering and
causality of interactions between nodes and has a profound effect on network dynamics and function.
Empirical evidence has shown that the temporal nature of links in many real-world networks is not random.
Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between
topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on
combined topological–temporal regularities, for quantifying the predictability of any temporal network. We
apply our framework on various model networks, demonstrating that it indeed captures the intrinsic
topological–temporal regularities whereas previous methods considered only temporal aspects. We also
apply our framework on 18 real networks of different types and determine their predictability. Interestingly,
we find that, for most real temporal networks, despite the greater complexity of predictability brought by
the increase in dimension, the combined topological–temporal predictability is higher than the temporal
predictability. Our results demonstrate the necessity for incorporating both temporal and topological
aspects of networks in order to improve predictions of dynamical processes.
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INTRODUCTION
Link temporality describes the time-varying nature
of couplings and interactions between nodes in real
networks [1–12], which has been found to signif-
icantly affect network dynamics. Examples include
innovative or epidemic diffusion [13], information
aggregation [14], the emergence of cooperation
[15] and the achievability of control [16]. Hence,
in order to alter network dynamical states in a desir-
able way, it is essential to quantitatively understand
both topological and temporal patterns. This raises
a fundamental question: how predictable are real
temporal networks? This question is much broader
and distinct from time-series forecasting [17–19],
which aims to predict the future evolution of single
variables, and link prediction [20–23], the goal of
which is to uncover the missing or future links in
static networks. Here we offer an entropy-rate-based
framework that considers the combined topology–
temporal patterns and apply them to a wide range
of model and real weighted and unweighted tempo-
ral networks, uncovering the prediction limits of real
temporal networks.

ANALYTICAL FRAMEWORK FOR
PREDICTABILITY
A temporal network with n nodes consists of a series
of snapshots (Fig. 1A), which can be described as a
2D expanded matrix M (Fig. 1B). Each column in
M represents one snapshot and each row represents
the temporality of a possible link, i.e. whether this
link is present in a specific snapshot and its weight.
Since all pairs of nodes must be taken into account,
the number of rows in M is n2. The full informa-
tion of the temporal network is encoded by this ma-
trix M , which can be viewed as a stochastic vector
process—a sequence of random vectors. To quan-
tify the predictability of this vector process, we use
the entropy rate, H , i.e. the asymptotic lower bound
on the per-symbol description length [24], which is
a rigorous measure of the level of randomness in the
process.As illustrated inFig. 1C,H canbe calculated
using a generalized Lempel–Ziv algorithm [25], of
which the essence is to calculate the recurrence times
of different patterns within a square: a 2D square
with side k is defined as MC (k), where C (k) =
{v = (t, s ) ∈ Z 2 : 0 ≤ t ≤ k, 0 ≤ s ≤ k} and v
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denotes the coordination of an element in M ; �v
v

represents the smallest integer k such that block
Mv−C (k) does not occur within the rectangle (0, v]
except at position v, where 0 = (0, 0). It has been
proven [25] that lim inf

n→∞
n2logn2∑

v∈C (n) (�v
v)

2 → H . Thus,
the entropy rate H of the matrix M is captured by

H(M) = n2logn2∑
v∈C (n)(�v

v)
2 , (1)

when the temporal network has a large num-
ber of snapshots (see Supplementary Material,
Section II).

The predictability of a temporal network is the
probability �M that a predictive algorithm can cor-
rectly forecast the future evolution of this network
based on its history. Once we have the entropy rate
H(M), the upper bound of predictability �max

M can
be obtained by solving

H(M) = −(
�max

M log(�max
M )

+ (1 − �max
M )log(1 − �max

M )
)

+ (1 − �max
M ) log (N − 1), (2)

where N is the number of unique values in matrix
M (see the ‘Methods’ section and Supplementary
Material, Section III). Here, �max

M is the fundamen-
tal limit of predictability, i.e. in principle, no algo-
rithm can predict the temporal network with an ac-
curacyhigher than�max

M . It isworth stressing that the
entropy rate obtained with the generalized Lempel–
Ziv algorithm is an asymptotic measure of random-
ness and Eq. (1) becomes more accurate when the
number of time steps is larger. Hence, given the fi-
nite number of snapshots in real temporal network
data sets, the calculated value of �max

M should be
interpreted as an asymptotic estimate of the upper
bound of predictability.Moreover,�max

M is an intrin-
sic property of the temporal network and does not
depend on a specific predictive algorithm.

The snapshots of real temporal networks are usu-
ally very sparse, so most rows in M consist of many
zeros. Thus, we sort the rows, i.e. all potential links,
in descending order according to the number of
their occurrences in all snapshots and remove those
links that are present in<10% of the snapshots, ob-
taining a newmatrix M̃ (see the ‘Methods’ section).
Our analyses in both model and real networks show
that the filtering process and the ordering of rows in
M̃ have a negligible effect on the predictability (see
Fig. 1D, and also Supplementary Material, Sections
IV and V); therefore, we use �max

M̃ to quantify the
predictability of temporal networks hereafter. Note
that the original entropy rate (Eq. 1) applies to
square matrices only, although the matrix M̃ of

a temporal network can be non-square. To over-
come this issue, we split the original matrix into
smaller squares with shorter history and find a linear
relationship between the predictability and the
number of squares, implying that longer history
leads to higher predictability, allowing us to calcu-
late the predictability of any temporal network (see
the ‘Methods’ section and Supplementary Figs 1
and 2 in Supplementary Material, Section III).

VALIDATION ON MODEL NETWORKS
Next, we test and validate our measure, �max

M̃ , i.e.
the topological–temporal predictability (TTP), in
synthetic weighted temporal networks (Fig. 2A).
The initial snapshot is a network with communi-
ties generated by a stochastic block model [26]
with links assigned with random weights. In each
snapshot henceforth, to generate a neighbor corre-
lation for each link, we activate either the temporal
parameter γ or the structural parameter β . With
probability β , we modify the structure and the link
changes its weight to that of an adjacent link; with
probability γ , we modify the temporal aspect and
the link weight stays the same as in the last snapshot;
otherwise, the link is assigned a random value (see
the ‘Methods’ section). Long-range correlations are
generated through 2D fractional Gaussian noise
(FGN) [27], with a power-law correlation function
C (r, ϕ) = r−γx cos2ϕ + r−γy sin2ϕ, where (r, ϕ)
are polar coordinates and γx is regarded as a decay
parameter in the temporal dimension, while
γy is for the topological dimension. We com-
pare, in Fig. 2B and C, our TTP with an existing
measure, namely temporal predictability (TeP)
[28], which considers the links of a temporal
network as merely a set of uncorrelated time
series and captures only the temporal regularity
(see the ‘Methods’ section), and also with three
predictive algorithms. For this, we employ three
commonly used methods, namely Markov [29],
ConvLSTM [30] and PredNet [31], to forecast
the future evolution of real networks. Markov con-
siders a temporal network as a set of uncorrelated
time series, ConvLSTM takes into considera-
tion link correlations, and PredNet is a dynamic
matrix-prediction algorithm based on ConvLSTM
(see Supplementary Material, Section IX for
details). As shown in Fig. 2B, TeP is significantly
smaller than TTP and, when parameters β and γ

increase, TeP can be seen to be nearly independent
of the structural parameter β , due to the fact that
TeP only partially characterizes the regularity of
temporal networks. Note that, since β and γ are
not completely independent of each other, TTP is
still slightly higher than TeP even when β and γ
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Figure 1. Quantifying the predictability of a temporal network. (A) The time-unfolded representation of a temporal network with four nodes.
Each snapshot is a weighted directed network where the thickness of links represents their weights. (B) Matrix M encodes the time evolu-
tion of each potential link, where each column embodies the structure of a snapshot. Links that rarely appear within the whole duration are re-
moved from the matrix, resulting in matrix M̃ , which captures the meaningful part of M (see the ‘Methods’ section). The rows of M̃ are sorted
into descending order according to the number of occurrences (see the ‘Methods’ section). A measure for the predictability of individual links
(PIL) that captures only temporal correlations has been developed [28]. (C) Calculation of �v

v for a part of M̃ . Note that M̃C (k ) is defined as a
2D square with side k , where C (k ) = {v = (t, s) ∈ Z 2 : 0 ≤ t ≤ k , 0 ≤ s ≤ k } denotes the coordination set of elements in M̃ , then �v

v ≡
inf{k ≥ 1|M̃u−C (k ) 
= M̃v−C (k ), ∀u ∈ [0, v], u 
= v}. (D) The fluctuations of topological–temporal predictability (TTP) for different orders of rows
in matrix M̃ . All matrices are extracted from a synthetic temporal network in Fig. 2A with rewiring probability p = 0.5. We also change p and
observe that it has no effect on the results (see Supplementary Material, Section V).

approach zero (highest correlations). The higher
accuracy of PredNet than the upper bound of
predictability provided by TeP, as well as the poor
performance of Markov, both indicate the signifi-
cance of topological information. The unexpected
insufficient performance of ConvLSTM, however,
is caused by the deconvolution layer, which intro-
duces errors. We further find similar results for 2D
FGN, although the varying range of predictabilities
is much smaller due to fewer possible values.

We also introduce synthetic unweighted tem-
poral networks (Fig. 2D) to validate our measure
(TTP). The initial snapshot is a ring and each snap-
shot thereafter is generated by randomly rewiring
a fraction p of links in the most recent snapshot.
Obviously, as p increases, the network becomes
more random, and hence less predictable (see
Supplementary Material, Section VI). However, the
structural consistency of the aggregated network—a
measure that captures only topological regularity
on static networks [32]—leads to conflicting
increasing predictability (Fig. 2E), demonstrating
again the necessity for considering link temporality.

In contrast, our measure, TTP, decreases
monotonously when p increases. Yet, due to
the high sparsity of these temporal networks,
TTP remains high for all values of p . To re-
move the impact of sparsity, we define and
calculate the normalized topological–temporal
predictability (NTTP) = (TTP − TTPbl)/(1.0 −
TTPbl) forTTPbl < 1.0 (see the ‘Methods’ section),
where NTTP is the normalized TTP and TTPbl
is the TTP of the shuffled network, which can be
viewed as the lower bound of the predictability of
temporal networks. In comparison with NTTP, we
also normalize TeP (called here the normalized
temporal predictability (NTeP)) over shuffled
links (see the ‘Methods’ section). As shown in
Fig. 2F, for p = 0, the network is fully predictable
(NTTP ≈ 1.0) and, for p = 1.0, the network
becomes totally random and unpredictable (NTTP
vanishes). Even thoughNTeP has the analogous de-
creasing behavior, it is usually lower than NTTP due
to the lack of topological information. Therefore,
the NTTP indeed captures the intrinsic regularity of
temporal networks.
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PREDICTABILITY AND PREDICTIVE
ALGORITHMS ON REAL NETWORKS
We apply our framework on 18 real temporal
networks in diverse scenarios, including animal in-
teractions, humancontacts, online communications,
political events and transportation (see Supplemen-
tary Material, Section I for the description of these
network datasets). We group these networks into
five categories and reveal the intrinsic predictability
profile, consisting of NTTP and NTeP, for each net-
work (Fig. 3A). We find that human contacts have
the highest averagedNTTP, probably resulting from
their synchronized bursty nature, while temporal
regularities dominate the overall predictability of

Figure 2. Predictability of synthetic temporal networks. (A)
To test the impact of link weights on predictability, we
develop a temporal stochastic block model with nearest-
neighbor correlations (see Supplementary Material, Section
VII for details) and long-range correlations [27]. The ini-
tial snapshot is generated by the stochastic block model
[26], consisting of nodes uniformly assigned to specific com-
munities. There are four communities with 100 nodes and
300 snapshots in each network, while the degree of each
node is 3. The link weights in subsequent snapshots are
generated according to topological parameters and tem-
poral parameters for the two models, respectively, with-
out changing the network topology. (B) Two predictability
measures (TTP and TeP) with three predictive algorithms
(Markov [29], ConvLSTM [30] and PredNet [31]) on nearest-
neighbor correlations with topological parameter β and
temporal parameter γ . Maximum of β or γ means the
strongest memory in the topological or temporal dimension.
TeP is obtained by averaging PIL. (C) Two predictability mea-
sures with three predictive algorithms on long-range cor-
relations with a power-law correlation function C (r , ϕ) =
r−γx cos2ϕ + r−γy sin2ϕ, where (r , ϕ) are polar coordinates
and γx is regarded as the temporal parameter, while γy is
the topological dimension. Results are averaged over 10 in-
dependent realizations of the networks. (D) To test the im-
pact of network topology on predictability, we develop an
evolving small-world network model. The first snapshot is
a ring network; subsequent topologies of the network are
generated by randomly rewiring a fraction p of links in the
previous snapshot. (E, F) Predictabilities of evolving small-
world networks against rewiring probability. The networks
are generated by the model in (D) with 50 nodes and av-
erage degree 2. Structural consistency (SC) is an existing
predictability measure for static undirected and unweighted
networks [32]. We normalize TTP over the TTPbl to elim-
inate the impact of link sparsity (see the ‘Methods’ sec-
tion), obtaining the intrinsic predictability of a temporal net-
work, and also obtain normalized TeP for comparison (see
the ‘Methods’ section).

transportation networks due to the periodicity of
each link (see SupplementaryMaterial, Section VIII
for details). Since the baselines for the normaliza-
tions in NTTP and NTeP are different, NTeP can
be higher than NTTP. However, we find another in-
teresting phenomenon inmost networks (excluding
Enron-Email (EE), Levant-Event (LE), Aviation-
Network (AN) and Britain-Transportation (BT)):
the intrinsic combined predictability is higher than
TeP despite the greater complexity of capturing
2D regularity rather than 1D. This implies the
significance of the topological information as
well as the correlation between the temporal and
topological patterns. Surprisingly, we also find
strong correlations between topological regularity
(characterized by the Hamming distance between
each link pair) and the difference betweenTTP and
NPIL (normalized predictability of individual links)
(see Fig. 3B and C), suggesting that the intrinsic
predictability of real networks mostly originates
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Figure 3. Predictability of real temporal networks. (A) NTTP and NTeP for 18 real networks (see Supplementary Material, Section I for the description of
these network datasets). ‘A’ means animal contacts, ‘H’ denotes human contacts, ‘O’ means online communications, ‘P’ represents political events, and
‘T’ stands for transportation. Note that NTeP can be higher than NTTP because the baselines for these two normalizations are different. (B) Distributions
of NTTP-NPIL and e1−h on real-world networks, where NPIL is the normalized predictability of individual links (see the ‘Methods’ section) and h is the
normalized Hamming distance between each link pair. (C) Correlation of average of NTTP-NPIL and e1−h for 18 real networks.

from temporal and topological regularity, rather
than from the interdependence between them.

Next, we compare our measure to the predic-
tive power of existing algorithms. We find that
the above existing algorithms mostly fall short in
prediction (see Fig. 4). Indeed, for a few networks
(Ant-Colony (AC): p-value = 7.1 × 10−15,
College-Message (CM): p-value = 6.1 × 10−7),

their accuracy is higher than the maximum pre-
dictability found by TeP. This is probably because
TeP fails to incorporate the topological aspects.
However, we found that the predictability given by
our TTP measure always remains out of reach from
the current algorithms, indicating again that TeP
alone cannot characterize the regularities in tempo-
ral networks.
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Figure 4. Predictive power of existing algorithms. Markov considers a temporal network as a set of uncorrelated time series [29], ConvLSTM takes
into consideration of link correlations [30], and PredNet is a dynamic matrix-prediction algorithm based on ConvLSTM [31] (see Supplementary Mate-
rial, Section IX for details). Error bars are the standard deviation of each algorithm over 10 different runs. Note that all algorithms do not reach our
topological–temporal predictabilities of real temporal networks. The accuracy of at least one algorithm is higher than TeP on AC, Marseilles-Contact
(MC), Workplace-Contact (WC), College-Forum (CF) and CM networks.

DISCUSSION AND OUTLOOK
We developed a 2D framework, based on combined
topology–temporal features, for quantifying the in-
trinsic predictability and uncovering the predictabil-
ity profile of any temporal network. Importantly, we
find that the accuracy of current algorithms could be
higher than the current temporal-only predictability
methods for some real temporal networks. Further-
more, they never exceed our TTP measure. Given
the fact that predictability is an essential property of
temporal networks, our findings suggest that more
accurate predictive algorithms are needed to capture
the regularities of real temporal networks, i.e. there
is room for researchers to continue improving their
predictive algorithms. In addition, applyingourmea-
sure of predictability to detect the changing points of
temporal networks and systematically investigating
the impact of predictability on dynamical processes
and control on temporal networks are worth future
pursuits.

METHODS
Matrix filtering
As mentioned above, most rows in matrix M for
a real temporal network consistently remain zero.
Such link sparsity leads to high predictability. We
sort links �1, �2, . . . , �n in the matrix M by their
activation rates a1, a2, . . . , an in descending order,
hence a1 > a2 > . . . an , then obtain M̃ according
to the filtering rules:

M̃ =
⎧⎨
⎩{�1, �2, . . . , �m} |m = inf

{
m ∈ (1, 2, . . . , n) |

m∑
i=1

ai ≥ 0.6
n∑

i=1
ai

}
, m < mθ

{�1, �2, . . . , �m} |m = inf {m ∈ (1, 2, . . . , n) |am ≥ 0.1} , m ≥ mθ

.

Since the estimation of the entropy rate con-
verges to the real entropy when the size of the
matrix goes to infinity [25], we include at least mθ

most active links or 60% of non-zero elements in the
matrix to diminish errors. Due to computational re-
strictions, we setmθ = 1000, although, in principle,
it could be higher with sufficient resources. All the
calculations are performed on M̃ . We show that the
matrix-filtering method has no influence on the re-
sults after reducing the matrix M to M̃ in Supple-
mentary Material, Section IV.

Derivation of predictability and its
normalization
Although adetailedderivation is provided inSupple-
mentaryMaterial, Section II, here we adumbrate the
main steps used to derive the upper bound of pre-
dictability. The entropy rate of a temporal network,
which is characterized as a randomfield, is defined as

H(M) ≡ lim
L→∞
T→∞

1
LT

H
(
MLT)

= lim
L→∞
T→∞

1
LT

∑
1≤ l ≤ L
1≤ t ≤ T

H
(
Mlt

∣∣history of Mlt
)

= lim
L→∞
T→∞

1
LT

∑
1≤ l ≤ L
1≤ t≤ T

H(l , t) ,

where history of Mlt ≡ {Mi j : ( j < t) or
( j = t and i < l)}.
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Suppose P(Mlt = M̂l t |τl t) is the probability that
is based on the history τl t , the actual value of Mlt
agrees with our estimation M̂l t , and λ(τl t) is the
probability that Mlt takes the most likely value
given τl t , thus

λ(τl t) ≡ max
{
P

(
Mlt = M̂l t |τl t

)}
.

Let P(τl t) be the probability of observing a spe-
cific history. It can be demonstrated that the best
prediction strategy based on this history is to adopt
the most likely value [28]; thus, the predictability
of Mlt is

�M (l , t) ≡
∑
τl t

P (τl t)λ(τl t).

Then the overall predictability� of a randomfield is

�M ≡ lim
L→∞
T→∞

1
LT

∑
1≤ l ≤ L
1≤ t ≤ T

�M (l , t) .

Because the entropy increases as the distribution
becomes uniform, the distribution created by setting
the remaining probabilities to be the samewhile pre-
serving the most likely value λ(τl t) = pmax has an
entropy no less than the original distribution. Note
that Mv ∈ A, Mv ≡ |A| and denote N ≡ |A|.The
entropy of the new distribution is

H(M) =
− (�max

M log�max
M + (1 − �max

M )log(1 − �max
M ))

+ (1 − �max
M )log(N − 1).

Then the solution of �max
M in the above equa-

tion is the upper bound of predictability �M . We
adopt the entropy estimator [25] as the entropy
rate H(M) for the calculation of predictability’s
upper bound�max

M

H(M) = n2log n2∑
v∈C (n)(�v

v)
2 ,

where v = (v1, v2), a 2D square with
side k , is defined as MC (k), C (k) =
{v = (v1, v2) ∈ Z 2 : 0 ≤ vi ≤ k, for all i } and
�v

v denotes the smallest integer k such that block
Mv−C (k) does not occur within the rectangle (0, v]
except at position v.

The link sparsity of a temporal network largely
determines its predictability even after we adopt
matrix filtering. To remove the impact of sparsity
and obtain the intrinsic predictability of a temporal
network, we normalize �max

M over the baseline (i.e.
predictability of shuffled network), which captures

only the regularity in the link-weight distribution.
Therefore, we have

pnorm =

⎧⎪⎨
⎪⎩
1, b = 1 and p = 1

p − b
(1 − b)

, otherwise
,

where p is the original predictability and b is the
baseline. It is worth noting that the NTeP is the av-
erage of theNPIL, which is obtained by normalizing
PIL over its own baseline PILbl.

Generalization of predictability using
predictive congruency
Since the application of our entropy estimator is lim-
ited to only square matrices [25], we explore the
correlation of weighted-average predictability and
number of squares by gradually splitting the non-
square matrix into a set of units, i.e. 1 × 1 squares,
and compute the predictability of each square. We
find the linear relationship between the weighted-
average predictability and the number of squares,
including units. Assume matrix M̃ is split into Q
squares s1, s2, . . . , s Q in the first splitting stage,
along with u units; let e s1 , e s2, . . . , e s Q be the
sizes of squares, then the areas of the squares are
e s1 2, e s2 2, . . . , e s Q 2. It is worth noting that we de-
fine the predictability of units as 1

|A| , whereA is the
finite value set of link weights in the temporal net-
work. Then the weighted-average predictability at
stage i , of which the weight equals the portion of
corresponding square in the matrix, is defined as

pi =
⎛
⎝Q−i+1∑

j=1

esj
2psj +

∑Q
Q−i+2esj

2 + u
|A|

⎞
⎠ /D,

while the number of squares for splitting stage i is

Ni = Q − i + 1 +
Q∑

j=Q−i+2

esj
2 + u.

Note that N1 = Q + u . Since there is a linear
relationship between pi and Ni , thus

esi2

esi2 − 1

(
1

|A| − pi
)

= kD,

pi = kNi + b,

where 1 ≤ i ≤ Q − 1, k and b are constants. Ac-
cording to our observations of k < 0, the negative
linear relationship between pi and Ni indicates the
positive correlation between the length of mem-
ory and predictability, since a smaller Ni means
larger squares with more memory. We define this as
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predictive congruency and use it to obtain the TTP
of each temporal network with non-square matrix

p = pNi=1 = k + b.

Synthetic networks
The temporal stochastic block model is used to test
the impact of link weight while topology remains in-
variant. When generating neighbor correlation in a
temporal stochastic block model, we determine the
weight of links individually according to parameters
β andγ . For each link, there is a probability ofmodi-
fying the link weight based on structural or temporal
aspects. If the structural parameter is selected, then
the probability for the link to adopt the same weight
as its neighboring link is β; when the temporal pa-
rameter is activated, the probability for the link to
remain the same as the previous snapshot equals γ .
Otherwise, the link is assigned a random value. Sup-
pose there are m links �1, �2, . . . , �n in the matrix;
then, theprobability density functionof a linkweight
at a certain time is

f(�i(t)) = pββδ�i(t)� j (t) + pγγδ�i(t)�i(t−1)

+ (
1 − pββ − pγ γ

)
δ�i(t)r ,

where i, j ∈ [1, n], i 
= j . pβ and pγ are the
probabilities to choose the structural parameter
β and temporal parameter γ , respectively, pβ +
pγ = 1. δxy is the Kronecker delta function, and
r is a random number.

Specifically, we assume pβ = pγ = 0.5 and
generate the matrix column by column, from top to
bottomwithin each column. If a link is determined to
adopt the weight of its neighboring link at a certain
time, we assign the prior link weight to it, which is its
adjacent element in the matrix. The initial snapshot
of the evolving small-world model is a ring network;
then, we obtain each snapshot by rewiring a fraction
of links in the previous snapshot.

TeP and NTeP
TeP is the average PIL in the network (Fig. 1). To
eliminate the influence of sparsity, we also normalize
PIL over its own baseline to obtainNPIL, andNTeP
as the average of NPIL.
TeP = 〈PIL〉,

NPIL =
⎧⎨
⎩
1, PILbl = 1 and PIL = 1
PIL − PILbl
(1 − PILbl)

, otherwise ,

NTeP = 〈NPIL〉,

where PILbl is the PIL of shuffled links.
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