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Abstract. Detecting fraudulent nodes from topological graphs is impor-
tant in many real applications, such as financial fraud detection. This
task is challenging due to both the class imbalance issue and the camou-
flaged behaviors of anomalous nodes. Recently, some graph contrastive
learning (GCL) methods have been proposed to solve the above issue.
However, local aggregation-based GNN encoders can not consider the
long-distance nodes, leading to over-smoothing and false negative sam-
ples. Also, random perturbation data augmentation hinders separately
considering camouflaged behaviors at the topological and feature lev-
els. To address that, this paper proposes a novel contrastive learning
architecture for enhancing the performance of graph fraud detection.
Specifically, a context generator and a representation refinement mod-
ule are embraced for mitigating the limitation of local aggregation in
finding long-distance fraudsters, as well as the introduction of false neg-
ative samples in GCL. Further, a multi-channel fusion module is designed
to adaptively defend against diverse camouflaged behaviors. The exper-
imental results on real-world datasets show a significant performance
improvement over baselines, which demonstrates its effectiveness.

Keywords: Graph Fraud Detection · Graph Contrastive Learning

1 Introduction

While enjoying the benefits of the surge in users under the convenience of the
Internet, all walks of life have also incubated various fraudulent activities. For
instance, fraudsters may create malicious accounts on payment platforms [18],
spread rumors (e.g., by posting fake reviews) on e-commerce platforms [11] or
make fictitious claims in the insurance industry [12]. Since many fraudulent
activities are performed by multiple entities, graph-based fraud detection meth-
ods which are able to discover and incorporate structural patterns have naturally
become the target of attention in both academia and industry.
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The mainstream graph fraud detection methods are Graph Neural Networks
(GNNs) based learning models, which have leveraged the power of message pass-
ing to learn node representations with the goal of identifying the fraudsters in
the embedding space [17,30]. They work well when features and topology keep
consistent with the labels [26]. However, this assumption is broken because the
graph-based detectors have motivated perpetrators to artificially disturb net-
works to camouflage their activities. For example, fraudsters disguise themselves
among a group of benign users by modifying features (e.g., camouflaged features)
or adding connections (e.g., camouflaged links) to many normal users. Hence,
the diverse camouflaged behaviors pose challenges to graph fraud detection.

In addition, to tackle the class imbalance issue, there are also some graph
contrastive learning (GCL) attempts for fraud detection [27], which show a good
performance and are becoming the trend in this area. However, there are three
main limitations that severely hinder obtaining significant node representations
and degrade the performance of fraud detection. First, most GCL methods
employ GNNs in the form of local aggregation as encoders, which makes the
representation of samples averaged or smooth in a local scope. Second, negative
samples are typically randomly selected from distant nodes, and it is challenging
for GNNs to capture long-distance yet similar nodes, resulting in false negative
samples. Third, random perturbation way commonly used in data augmenta-
tion may lose some useful structure or attribute information, which hinders the
analysis of diverse camouflaged behaviors.

Motivated by the above gaps, the purpose of this paper is to alleviate the
above issues thereby improving the performance of fraud detection. To address
that, based on a general contrastive learning framework, a Multi-channel repre-
sentation refInement Contrastive learning method for frAud detection (MICA
for abbreviation) is innovatively proposed. Specifically, we first embrace a con-
text generator for capturing global information, hoping to learn similar cam-
ouflage patterns of fraudsters even in a long-range situation. Based on it, an
augmentation-agnostic representation refinement module works on representa-
tion space, for the purpose of reducing false negative samples and mitigating
over-smoothing. Then, considering that the random perturbation way may dis-
turb the analysis of where the camouflaged behaviors come from, an adaptive and
fine-grained multi-channel fusion module is designed to defend against diverse
attacks. The contributions can be summarized as follows:

– To our best knowledge, this is the first paper to simultaneously explore the
problems of over-smoothing, false negative samples, and the conflicts of ran-
dom perturbation data augmentation under camouflage behaviors in the GCL
framework for graph fraud detection.

– We proposed a general MICA model which solved the above limitations of
existing GCL solutions, the adequate experiments show that our method
achieves significant improvements for the fraud detection tasks.
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2 Related Work

2.1 GNN-Based Fraud Detection

There are some survey works about graph anomaly or fraud detection
recently [19], the key challenges referring to fraud detection include the exis-
tence of camouflage behaviors, the class imbalance issue, and data scarcity. The
camouflage behavior makes the graph vulnerable to topology and features, result-
ing in smoother node representations obtained by GNNs, and thus fraudsters
are indistinguishable from normal nodes. To solve that, some previous studies
have designed some strategies such as neighbor filtering [13], adversarial learn-
ing [28] or active generative learning [7] to achieve robustness and generalization
in the presence of fraudsters. As for the class imbalance issue, some under-
sampling [5] and data augmentation [14] methods are employed. In addition,
Some recent approaches like active learning [21], meta learning [4], and data aug-
mentation [31] are proposed to solve the data scarcity problem. Although these
methods have explored fraud detection from varied perspectives and achieved
effective results, few of them consider these issues simultaneously.

2.2 Graph Contrastive Learning Way

Due to the advantages of graph contrastive learning (GCL) models in various
fields, some methods have also been utilized to learn node representation for
fraud/anomaly detection. Such methods generally assume that abnormal users
can be distinguished by structural patterns. However, there is a problem in
that the structural patterns and the label semantics are not consistent, which
is a vital factor that impacts the representation learning found by DCI [27]
method. Hence, the DCI method injects a clustering step in the GCL scheme
to reduce data inconsistency. In addition, a graph contrastive coding-based
method GCCAD [2] is proposed for contrasting abnormal nodes with normal
ones in terms of their distances to the global context, with scarce labels in a self-
supervised way. The above methods do not consider the attributed networks, so
CoLA [15] was designed to learn informative embedding from high-dimensional
attributes and local structure, and measure the anomaly score for each instance
pair. Although the above GCL-based studies have been proposed, the basic lim-
itation of GCL methods for fraud detection has not been explored.

3 Methodology

In this section, we first formulate the problem and introduce the overview of
the proposed MICA framework, then systematically explore each module for the
fraud detection task.

3.1 Problem Definition

In fraud detection problem on graph G = (V, E ,X ) with n nodes, each node
vi ∈ V with features xi ∈ X ∈ R

n×d represents the target entity whose sus-
piciousness needs to be justified. For example, to detect fake reviews on the
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Fig. 1. The architecture of our MICA model. Based on the general GCL framework, our
MICA additionally designed the context generator, representation refinement module,
and multi-channel fusion module.

e-commerce platform, the target entities are genuine and fake reviews. Corre-
spondingly, nodes have labels Y ∈ {0, 1}, where 0 denotes benign and 1 repre-
sents suspicious. The edge (i, j) ∈ E links node vi and vj due to some certain
relationships or shared attributes, e.g., two reviews from the same user or posted
from the same devices. Hence, the fraud detection problem is a binary node clas-
sification task on the graph.

3.2 Overview of Proposed MICA

As explained above, the false negative samples and over-smoothing caused by
the GNN-based view encoder, and the conflicts of random perturbation way
with existing diverse camouflaged attacks pose certain challenges to GCL meth-
ods. Thanks to the superiority of the CL model for this problem [27], we make
improvements based on the GCL framework. As shown in Fig. 1, we additionally
design three components in our MICA model, namely context generator, repre-
sentation refinement, and multi-channel fusion. The context generator is to learn
a mapping function fc

φ(·) from a global scope with notable normal and fraud-
ster patterns (Sect. 3.3). Based on it, the augmentation-agnostic representation
refinement module is proposed to map each view (e.g., q1,q2) into a unified
space and refine their distances for mitigating the averaged embedding and false
negative samples (Sect. 3.4). Besides, to explore different camouflaged behaviors
under random perturbation, an adaptive and fine-grained multi-channel fusion
module is designed (Sect. 3.5). Finally, a supervised contrastive loss is applied
on the anchor, positive and negative samples for learning downstream relevant
representations (Sect. 3.6).

3.3 Context Generator

In order to alleviate the false negative samples and the over-smoothing brought
by local aggregation-based GNNs, we put forward a context generator to obtain
the information from a global scope, then local feature differences are easier
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to be distinguished under its transformation. For example, for a fraud node
that intentionally connects many normal nodes, it is easier to recognize the
camouflage nature of this behavior by searching for similar cheating patterns
from distant abnormal nodes.

Context Definition. The context represents a representation space with a
global view, which could be sub-graphs of m nodes with d-dimensional node fea-
ture Xc ∈ R

m×d and topological information Ac ∈ R
m×m. In our experiments,

we consider context as a whole graph for a stable and global expression, which
means n = m in such a case. Inspired from attention mechanism [1], we calculate
it via the keys K ∈ R

m×k and values V ∈ R
m×v, k and v are the query/key

depth and value depth respectively:

K = FK(Xc,Ac) (1)

V = FV (Xc,Ac) (2)

Here the function FK(·) and FV (·) are keys and values generators, which can
be linear/non-linear functions only considering the feature information or graph-
based algorithms like graph convolutional networks (GCN). We implemented
several solutions for the generator, whose results could be seen in Table 2.

Generating the Context Map. With the generated keys and values, we wish
to generate a linear function fc

φ(·) : Rk → R
v, i.e., a matrix C ∈ R

k×v. We start
by normalizing the keys across the nodes in a context via a softmax operation,
which is K = softmax(K, axis = m), then the matrix C = K

T
V is obtained by

using the normalized keys K ∈ R
m×k to aggregate the values V.

Note that we choose to use different model parameters to generate keys and
values, which can represent different levels of context. After the above opera-
tion, it is equivalent to performing screening in the context and retaining the
expressive information. That is to say, some notable patterns of benign users
and fraudsters remain in the context map.

3.4 Representation Refinement

With the notable patterns in the context map, to capture the long-distance
but similar nodes, it is natural to refine the distance of nodes by transforming
their hidden representations. Similarly, we denote n nodes as the queries Q =
{q1,q2, ...,qn} ∈ R

n×k. In a graph, although each query can be calculated by
topology and features, here we think that only considering node features is more
conducive to interacting with the context. Therefore, a query is generated by
linearly mapping the node features to a specific space via function FQ(·):

Q = FQ(X) = XWQ (3)

Here WQ ∈ R
d×k is the parameter transforming node features X ∈ R

n×d

into queries. For a graph, the interactions between nodes and subgraphs as well
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as the whole graph can be useful. Essentially, we can treat each row of matrix
C as a basis, that is C = {C1,C2, ...,Ck}, and each basis maps each dimension
of the query qi = {q1, q2, ..., qk} to get a unified representation from a global
scope. Based on that, we apply the context matrix to the query qi for obtaining
the context-aware embedding of node vi, which is denoted as zc

i ∈ R
v:

zc
i = CTqi = C1q1 + C2q2 + ... + Ckqk (4)

The context matrix C is shared across all queries and is invariant to the
permutation of the context elements, which helps distinct nodes with similar
patterns to be close to each other in the representation space. Especially for
fraudsters, their embeddings are closer even if they are not directly connected.

3.5 Multi-channel Fusion

Although the context matrix maps each node to a global space, the random
permutation way of data augmentation in GCL usually randomly masks the
node attributes or edges, which hinders the exploration of analyzing the effect of
different elusive camouflaged behaviors, therefore we further conduct an adaptive
multi-channel way to better represent the contrastive views.

Concretely, apart from the context-aware embedding zc
i ∈ R

v of node vi, we
also obtain the feature-aware embedding zf

i and topology-aware embedding zt
i

with the same dimension via MLP operation:

zf
i = ff

θ3
(xi) = MLP (xi) (5)

zt
i = f t

θ4
(A) = MLP (ũi) (6)

For the feature encoder ff
θ3

(·) and topology encoder f t
θ4

(·), the MLP consists
of three linear layers with the exponential linear unit as the activation functions.
Here ũi represents the top r dimensions of the eigen vector of node vi, which is
calculated by the eigen decomposition [10] based on adjacency matrix A, i.e.,
A = UΛU−1. Except for the eigen decomposition way to obtain the topological
information, other graph embedding methods such as random walks can be tried.

To explore their contributions in the final representation, we employ a gated
way to adaptively adjust their weights. Concretely, we calculate the activation
vectors αc

i ,α
f
i ,αt

i for the context gate, feature gate, and topology gate respec-
tively based on the embedding zc

i , z
f
i , zt

i. For space limitation, we give the cal-
culation process of αc

i as an example, the same process but with linear function
Ff

α(·) and F t
α(·) for the other two gated vectors:

αc
i = σ

(
Fc

α

(
zc

i‖zf
i ‖zt

i

))
(7)

This fine-grained way allows a good trade-off between the refined represen-
tation and original information, so as to automatically explore the camouflaged
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attack under random perturbation. Then the final embedding zi is the weighted
sum of the above three, which serves as the contrastive samples.

zi = αc
i ◦ zc

i + αf
i ◦ zf

i + αt
i ◦ zt

i (8)

Here Fc
α(·),Ff

α(·),F t
α(·) are linear functions for each channel, operator ‖

means concatenation, operator ◦ represents Hadamard product, and σ(·) is the
Sigmoid function. After the pre-processing phase, we load the learned parame-
ters to initialize the encoder in fine-tuning process, and the classifier is trained
with a cross-entropy loss.

3.6 Supervised Contrastive Loss

On the basis of node representation, we can construct anchors and positive
as well as negative samples for contrastive learning. In general, self-supervised
loss functions like InfoNCE are adopted for training in CL. In our case, since
the camouflage behavior disturbs the original input data, we strongly need the
label information to perform some bias correction in the representation space.
In addition, according to the conclusions of some recent studies [22], incorpo-
rating supervised information helps to reduce the mutual information between
contrastive views while keeping task-relevant information intact.

The representation of the anchor, the positive and negative sample is sepa-
rately defined as zo, zp, zn, then the supervised contrastive loss [8] with temper-
ature parameter τ in the pre-training process, adapting it to the fully supervised
setting for leveraging label information is formulated as:

LSupCon = −
∑
o∈V

1
|P (o)|

∑
p∈P (o)

log
exp(zo · zp/τ)∑

j∈V\{o} exp(zo · zn/τ)
(9)

Here P (o) ≡ {p ∈ V \ {o} : yp = yo} is the set of indices of all positives
distinct from node vo but sharing the same label, and |P (o)| is its cardinality.
If the anchor is graph embedding without label information, then positive and
negative nodes are selected in terms of their labels.

3.7 Model Discussion

It is worth noting that our framework is compatible with the major components
in CL, whether it is data augmentation strategies, pretext tasks (e.g., the same
scale views like node-node pair or cross-scale views like node-graph pair) or
contrastive objectives. We explore the varied strategies in the experiments (see
Sect. 4.4). Besides, the method of generating context based on the keys and values
has a small number of parameters. Concretely, in regular attention mechanism,
the attention map calculated by QK� has O(n ∗ m) space complexity with n
inputs (which is used to generate queries) and m context (which is used to
generate the keys and values). While in our model, we obtain the context map
by K�V with O(k ∗ v) space complexity. Generally, it is called local attention
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Table 1. The Statistics of Datasets.

Dataset #Nodes #Edges Fraud HR

Amazon 11,944 4,404,364 6.87% 0.91

YelpChi 45,954 3,869,956 14.53% 0.77

when the context length m is smaller than the number of samples n (m � n),
while global attention is when n = m. Since the key depth k will be set to a
small value in practice, the final output dimension v is also smaller than the
number of inputs, we have a much smaller memory cost. That is to say, it is an
efficient calculation way compared to regular attention mechanisms.

4 Experiments

In the experiments, we mainly focus on verifying the effectiveness (in Sect. 4.2
and Sect. 4.3), expandability (in Sect. 4.4) and explainability (in Sect. 4.5).

4.1 Experimental Settings

Datasets. For the sake of fully verifying the above questions, we conduct exper-
iments on two widely used real-world datasets (i.e., Amazon and YelpChi) whose
statistics can be found in Table 1. Here we calculate the node-level homophily
ratio (HR) for a better understanding of the camouflage links in the datasets.

Baselines. In order to fully analyze the performance of the model, we compare
it with the following models from three categories:

Message passing GNNs have proved to be powerful in a variety of tasks on
graphs. We select three architectures that are trained in an end-to-end manner.
GCN [9], GAT [23] and GPR-GNN [3]. Specifically, GPR-GNN is a more pow-
erful GNN that utilizes adaptive multi-hop aggregation to avoid over-smoothing
and learn difficult label patterns.

GCL-based models show great potential in handling labels related issues,
which is crucial in anomaly detection tasks. We choose Deep Graph Infomax
(DGI) [24] and recently proposed Deep Cluster Infomax (DCI) [27] (which
also falls into the Fraud Detection category). Besides, we also design a general
GCL method called GCN+SupCL as a baseline, it uses GCN as the encoder
in a supervised contrastive loss-based CL.

Fraud detection schemes include models which were proven to perform
well in anomaly detection tasks. In this category we consider CARE-GNN [5],
GeniePath (with its variant GeniePathLazy) [17], FRAUDRE [29] and PC-
GNN [13]. CARE-GNN leverage reinforcement learning (RL) to effectively deal
with camouflaged fraudsters and GeniePath utilizes multi-hop attention to learn
receptive paths and propagate signals in the graph in a more effective fashion.
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Table 2. Overall evaluation on YelpChi and Amazon datasets.

Method YelpChi Amazon

AUC (%) AP (%) Recall (%) Acc. (%) AUC (%) AP (%) Recall (%) Acc. (%)

Baselines GCN 61.31 25.32 50.02 85.47 74.40 20.72 50.02 93.12

GAT 63.31 26.72 50.81 85.59 78.19 26.77 51.77 93.12

GPR-GNN 83.65 52.77 63.07 87.48 96.57 84.54 88.48 97.99

GCN+SupCL 59.99 22.37 50.07 85.47 85.35 39.35 54.11 93.36

DGI 66.88 29.64 53.71 85.71 83.24 40.47 58.36 93.60

DCI 66.72 29.44 53.42 85.63 83.29 42.08 64.64 93.32

CARE-GNN 79.21 42.24 72.00 71.16 95.20 86.30 88.47 96.19

GeniePath 76.90 39.78 56.70 86.13 77.40 33.33 57.75 94.11

GeniePathLazy 84.93 56.61 64.64 88.05 96.65 85.82 88.56 98.10

FRAUDRE 83.82 52.35 75.00 72.72 95.88 87.68 89.86 96.23

PC-GNN 83.76 55.05 70.00 68.43 94.96 81.86 88.58 86.86

Variants ICA(GPR) 77.81 42.90 62.54 85.97 94.30 82.15 87.76 97.72

ICA(MLP) 83.47 51.69 63.26 87.33 95.53 83.13 86.92 97.72

ICA(GCN) 86.67 62.28 69.53 89.03 97.60 87.58 87.46 97.88

MICA(topo.) 86.92 62.28 69.74 88.84 97.76 87.51 87.46 97.76

MICA(feat.) 88.90 66.97 74.52 89.57 97.79 88.07 91.22 97.75

MICA 89.36 67.94 75.33 89.56 98.01 88.89 90.95 97.84

FRAUDRE considered the multi-relation among users and unified the graph-
agnostic embedding and fraud-aware graph convolution module into a GNN
framework, while PC-GNN proposed a pick-and-choose step to sample neighbor-
hoods and getting the final node embeddings by aggregating neighbor informa-
tion under different relations. Although there are more architectures designed for
anomaly detection (e.g., Player2Vec [30], SemiGNN [25] and GraphConsis [16]),
we decided not to include them in our study because these recently published
methods outperform them significantly on both datasets.

Evaluation Metrics. In fraud detection problems we are naturally more inter-
ested in correctly identifying fraudsters (positive instances). Moreover, as we
mentioned before, the classes are naturally imbalanced, which is reflected in
both datasets. For the above reasons, we utilize four metrics: ROC-AUC (AUC),
Average precision score (AP), Recall and Accuracy (Acc.).

Parameters Settings. For fair comparison, we separately adopt 40% and 60%
of whole data as training set and testing set, and use the following unified setup
for all models: hidden dimensions = 64, number of epochs = 1000 on YelpChi
and 300 on Amazon, batch size = 1024 for YelpChi and 256 for Amazon, learning
rate = 0.002 and L2 regularization weight = 5e−4. In our MICA model, the rep-
resentation dimension of query/key k = 16 and the representation dimension of
value v = 64. All of the models are trained with Adam optimizer, the results are
averaged on 20 run times. We implement code based on PyTorch Geometric [6].
The code is available at https://github.com/goiter/anomaly detection.git.

https://github.com/goiter/anomaly_detection.git
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4.2 Overall Evaluation

In addition to conducting experiments on the baselines, we also implement some
variants of our models from two perspectives.

– ICA: In order to focus on verifying the performance of the context generator
and representation refinement module, we name a method as ICA which is our
MICA model without the multi-channel fusion module. Besides, we implement
the same function but not sharing parameters for keys and values generator
(i.e., the function FK(·) and FV (·) in Eq. (1)) in three ways: GPR-GNN,
MLP and GCN. We refer to these models as ICA(GPR), ICA(MLP) and
ICA(GCN) respectively.

– MICA: This is our proposed model which includes all modules in Fig. 1 with
the keys (and values) generator implemented as GCN. While MICA(topo.)
and MICA(feat.) are the variants of MICA fused with only the topology-
aware embedding and the feature-aware embedding respectively.

According to the results shown in Table 2, we summarize our conclusions as
follows: (1) The proposed model MICA contributes to fraud detection
significantly. Even without the multi-channel fusion module, our ICA(GCN)
outperforms the baselines on almost all evaluation metrics. The performance
improvement between ICA methods and GCL-based methods like DCI indicates
that the context generator and representation refinement module have a certain
effect on solving the problem of false negative samples. (2) The multi-channel
fusion module is more advantageous in heterophilic datasets. By com-
paring the results of ICA(GCN) and the variants of MICA, it is obvious that
the multi-channel module plays an important role in the overall performance
of YelpChi. We hypothesize that the main reason for that is the dataset being
relatively heterophilic (with 0.77 homophily ratio [20]). That is to say, there is
a considerable portion of connected nodes belong to different classes. In this
situation, it may be necessary to pay more attention to the context and feature
information. (3) The results under different context generators reflect
that the context should retain as much information as possible from a
global scope. By comparing the results under the variants of ICA, we can see
that the GCN-based context generator performs best. Although the GPR-GNN
method achieves impressive results in a supervised manner, the performance of
ICA(GPR) is not as good as that of ICA(MLP), indicating that the context in
the pre-training phrase requires as comprehensive information as possible.

Besides, according to the results of the baselines, we can draw some observa-
tions: (1) The widely used GNN methods (i.e., GCN and GAT) fail to achieve
good results on fraud detection datasets, while the results of GPR-GNN are
impressive due to its ability to adaptively learn the weights in order to optimize
nodes features and topological information extraction process. (2) The perfor-
mance of the GCL-based models (i.e., GCN+SupCL, DGI, and DCI) on these
two datasets is not very satisfactory. The results of GCN+SupCL on the YelpChi
dataset are worse than the GCN method but better on the Amazon dataset,
which illustrates that graph contrastive learning methods are not necessarily
better than GNNs, and more powerful view encoders are needed. As for DGI
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(a) MICA (Amazon) (b) DCI (Amazon) (c) MICA (YelpChi) (d) DCI (YelpChi)

Fig. 2. Comparison of cosine similarity of MICA and DCI between benign-benign (B-
B), fraudster-fraudster (F-F) and benign-fraudster (B-F) users. Sub-figure (a) and (c)
are the results of MICA while Sub-figure (b) and (d) are from DCI.

and DCI, we believe that for larger datasets, contrasting each node to the full
graph or some feature-based clusters is not good enough to separate them with
camouflaged behaviors. (3) CARE-GNN, GeniePathLazy, FRAUDRE, and PC-
GNN also perform well. By selecting neighbors and considering the multi-relation
on edges, CARE-GNN and PC-GNN deeply mitigate the attack brought by the
topological camouflage behavior. FRAUDRE which investigated aspects of the
features, topologies, and relations proved the ability in solving the heterophily
issue. GeniePathLazy with the individual feature map in the multi-hop atten-
tion has achieved better performance than GeniePath, which also verifies the
necessity of our proposed multi-channel fusion module.

4.3 Visualization on Distinguishable Representations

In order to verify the motivation and intuitively prove that our MICA model
learned better representations and mitigated the over-smoothing, we compared
the pairwise cosine similarity of node embeddings with DCI methods. Figure 2
shows the violin plot of inner-class (B-B, F-F) and inter-class (B-F) similarities,
which is a box plot with the addition of a rotated probability density and the
average value represented as white dots. On one hand, according to Fig. 2(a) and
Fig. 2(b), we can clearly observe that the inner-class similarity of MICA on the
Amazon dataset is higher than that of DCI, and the opposite for inter-class. That
is to say, MICA has distinct distributions for inner- and inter-class similarities,
while the distributions of DCI are closer and more difficult to distinguish. On
the other hand, the YelpChi dataset has a lower homophily ratio, implying the
prevalence of structural anomaly compared with the Amazon dataset. According
to Fig. 2(c) and Fig. 2(d), though with overlapped distributions, for MICA there’s
a clear difference between the means of inner- and inter-class distributions, while
we can barely observe any difference between the counterparts from DCI. In
a word, our MICA model makes node representation more distinguishable on
inner- and inter-class, which proved that MICA alleviated the over-smoothing
issue and is more beneficial to detect camouflaged behaviors.

4.4 Expandability and Ablation Study on ICA

In Sect. 4.2 we analyze the performance of our ICA model and its variants with
different context generators, which is one of the ablation studies. Besides, due to
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(a) Variants of ICA (YelpChi) (b) Variants of ICA (Amazon)

ICA
Variants

Contrastive
Modes

Contrastive
Losses

Augmentation Way
Anchor Positives Negatives

ICA-2Aug node-graph pair self-supervised aug1 aug1 aug2
ICA-1Aug node-graph pair self-supervised - - aug
ICA-0Aug node-graph pair supervised - - -
ICA-Sup node-node pair supervised - - -

Fig. 3. Comparison of our ICA model on varied contrastive modes, training losses and
data augmentation strategies for contrastive views. The different settings of the ICA
variants are listed in the table.

the expandability of our proposed framework, it supports different contrastive
modes, contrastive losses and data augmentation strategies for contrastive views.
Therefore, in this section we analyze the effects of them. For fair comparison,
we merely conduct variant experiments in our ICA model.

As the table in Fig. 3 shows, we implement the ICA method with varied con-
trastive modes, contrastive losses and data augmentation strategies. Concretely,
the node-graph pair contrastive mode is to treat the graph embedding as the
anchor and node embeddings as positive/negative samples. The graph embed-
ding is obtained by sum pooling on node embeddings. Similarly, the anchor and
contrastive samples in node-node pair contrastive mode are all base on node
embeddings. The samples in ICA-2Aug are all obtained by two kinds of data
augmentation methods (i.e., aug1 and aug2). Differently, the data augmented
nodes as negative samples in ICA-1Aug, while the original nodes and their cor-
responding graph representation are used as positive samples and the anchor.
Note that we implement the data augmentation by randomly removing the edges
with a 0.2 dropout rate and masking the features with a 0.1 probability.

By observing Fig. 3 we can draw the following conclusions. Firstly, the meth-
ods training with supervised contrastive loss (i.e., ICA-0Aug and ICA-Sup)
outperforms the ones with self-supervised loss (i.e., ICA-2Aug and ICA-1Aug),
which verifies that leveraging label information in pre-training makes representa-
tions keeping task-relevant information. Secondly, compared with the results of
ICA-Sup and ICA-0Aug, it shows that the node-node pair contrastive mode may
be more suitable for this node-level fraud detection task than the node-graph
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(a) Gates Distribution (YelpChi) (b) Gates Distribution (Amazon)

Fig. 4. Distributions of the context gate, feature gate, and topology gate in MICA.
Each data point in the x-axis is obtained by averaging over the feature dimension.

pair. In addition, it may also be due to the design of the context generator and
representation refinement module enriching the node samples with notable pat-
tern information, making it more effective and intuitive when doing the sample
contrastive learning. Thirdly, by comparing the results on simply designed data
augmentation strategies, using different data augmentation strategies in ICA-
2Aug and ICA-1Aug does not seem to have much effect on the results, which
implies that the representation refinement module is augmentation-agnostic. In a
summary, all the above ablation studies show the expandability and effectiveness
of our proposed ICA architecture.

4.5 Explainability of Multi-channel Fusion Module

Table 2 indicates that the feature-aware embedding alone (MICA(feat.)) brings
the most significant improvement to our ICA model, and it will continue to
advance with the addition of topology-aware embedding (MICA). However, it is
impossible to directly measure the contributions of each module solely depending
on Table 2, since the gating module relies upon the coupling of the involved
embeddings. Therefore, we draw Fig. 4 to analyze which part of information is
more crucial for fraud detection. Specifically, we draw the distribution of three
gates (i.e., αc,αf ,αt) based on their average values over feature dimensions.

From the distribution figures, we can infer that the contribution of context-
aware embedding is the highest on YelpChi dataset, and the role of feature-aware
embedding is slightly more important than that of topology-aware embedding.
While on Amazon dataset, the contributions of them are less different, with the
topology-aware embedding being the most important component. These results
imply that the designed multi-channel module enables our MICA model to be
applicable to varied datasets, and be able to interpret the results.

5 Conclusion

In this paper, we aim to design a new solution for enhancing prediction perfor-
mance in fraud detection tasks. Considering the node representations learned
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from GCL methods are hampered by the over-smoothing and false negative
samples under various camouflage behaviors, we propose a general contrastive
learning model to improve the representational power. From a global camou-
flage patterns perspective, nodes are transformed into a unified representation
space via the generated context and representation refinement module. Then the
multi-channel fusion module is considered to mitigate the conflicts of random
perturbation with various camouflaged behaviors. Finally, a supervised training
loss is adopted for learning a downstream relevant embedding. All of the designed
modules greatly improve the distinguishability of the fraudster and benign user
in the representation space. The implemented experiments fully verify the effec-
tiveness of the proposed solution in fraud detection. Due to the generality of our
proposed framework, we believe that in the future, designing a different context
map for each application scenario is a worthy direction to explore.
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